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Abstract

The fact that the Universe is expanding has been known since the 1920’s. If the Universe was
filled with ordinary matter, the expansion should be decelerating. Beginning in 1998, however,
observational evidence has been accumulating in favor of an accelerating expansion of the Universe.
The unknown driver of the acceleration has been termed dark energy. The nature of dark energy
can be investigated by studying its equation of state, that is the relationship of its pressure to
its density. The equation of state can be measured via a study of the luminosity distance-redshift
relation for supernovae and can be further constrained by adding baryon acoustic oscillation (BAO)
and cosmic microwave background data (CMB). In this study, we employ supernovae data, BAO,
and CMB data, including measurement errors, to determine whether the equation of state is
constant or not. Our method is based on Bayesian analysis of a differential equation and modeling
w(z) directly, where w(z) is the equation of state parameter. This work stems from collaboration
between UCSC and Los Alamos National Laboratory (LANL) in the context of the Institute for
Scalable Scientific Data Management (ISSDM) project.

Data

Supernovae Data (SNe)
There are 397 SNe in this SALT data set. Each SNe has a redshift (z) value, and observed distance
modulus (µ), uncertainty measure for µ (τ ). The plots are colored by the telescope or observational
group.

Supernovae will have the following likelihood equation in our analysis:
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The main parameter of interest is w(u) (Dark Energy equation of state). There are four other
unknown parameters: the variability (σ2), a scaling constant (M), the dimensionless matter density
parameter (Ωm), and Hubble’s parameter (H0), also Ωr = 0.247/H2

0 and c = 3 ∗ 105 is the speed
of light. The data is given as zi, µi, and τi, so these are known values in our equations.

T1(z, ...) = M + 25 + 5log10c(1 + zi)
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BAO
BAO data will have the following likelihood equation in our analysis:

L ∝
(

1
σ

)n
e
−1

2

∑

(

.469( ns
0.98)

−.35−T2
0.017σ

)2

Currently, there is only one measured value available for BAO: z1 = 0.35 where

A = 0.469
( ns
.98

)−.35 ± 0.017 and ns = 0.958 ± 0.016. We will use a hierarchical form to
account for both types of uncertainty in A. ns will be treated as a parameter with prior
N(0.958, 0.0162). The data relation transform in this case will be:
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CMB
CMB data will have the following likelihood equation in our analysis:
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The CMB data comes from the Wilkinson Microwave Anisotropy Probe: R = 1.713 ± 0.020 at
redshift z2 = 1087.86± 1.13. T3 =

√
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Models

Parametric
Model 1 - w(u) = a, where a is a constant and Model 2 - w(u) = a + b

(

1
1+u − 1

)

With these models the inner integral can be done analytically. Unfortunately, these models are not very flexible. It
is hard to quantify how they fit w(u) because it is a second derivative of the observed data and residual plots and
goodness of fit tests tend to be inaccurate. (Priors are needed for all models π(σ2) ∼ IG(10, 9), π(H0) ∼ N(71.9, 2.7),
π(Ωm|H0) ∼ N(0.1326(100/H0)

2), (0.0063(100/H0)
2)2), π(a) ∼ U(−25, 1), and π(b) ∼ U(−10, 10),

Non-parametric
Model 3 - Gaussian Process Model
w(u) ∼ GP (−1,Σ22 = κ2K(u, u′)) where K(u, u′) = ρ|u−u′| is the exponential correlation function. The inner integral

in this case cannot be done analytically but has the property that y(s) =
∫ s
0
w(u)
1+u du is also a GP that can be found by

integrating the correlation function of w(u).

y(s) ∼ GP (−ln(1 + s),Σ11κ
2
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We will use the mean as our inner integral:

E[y(s)|w(u)] = −ln(1 + s) + Σ12Σ
−1
22 (w(u)− (−1)) where Σ12 = κ2

∫ s
0
ρ|u−u′|

(1+u)
du

The specific priors for this model will be: π(κ2) ∼ IG(25, 9) and π(ρ) ∼ Be(6, 1)

Results

a b Ωm Ωr10
−5 H0 M σ2

Model 1
SNe (-1.117,-0.800) NA (0.219,0.308) (4.1,5.6) (66.38,77.15) (0.03,0.37) (1.02,1.34)

SNe+BAO (-1.163,-0.787) NA (0.230,0.320) (4.2,6.0) (64.26,76.42) (-0.04,0.35) (1.03,1.37)
SNe+CMB (-1.048,-0.848) NA (0.233,0.292) (4.3,5.5) (67.25,75.42) (0.07,0.32) (1.02,1.34)

SNe+BAO+CMB (-1.099,-0.840) NA (0.239,0.303) (4.3,5.6) (66.28,75.50) (0.04,0.31) (1.03,1.35)
Model 2
SNe (-1.270,-0.469) (-2.000,3.486) (0.223,0.317) (4.2,5.7) (65.98,76.61) (0.03,0.36) (1.03,1.34)

SNe+BAO (-1.538,-0.233) (-3.514,5.518) (0.236,0.328) (4.3,6.2) (63.35,75.40) (-0.05,0.32) (1.03,1.36)
SNe+CMB (-1.174,-0.493) (-0.975,2.576) (0.230,0.301) (4.3,5.5) (66.94,75.95) (0.05,0.34) (1.02,1.35)

SNe+BAO+CMB (-1.218,-0.318) (-1.090,4.263) (0.239,0.319) (4.3,5.9) (64.64,75.84) (-0.01,0.34) (1.03,1.37)
Model 3
SNe NA NA (0.221,0.313) (4.2,5.6) (66.13,76.76) (0.02,0.37) (1.02,1.34)

SNe+BAO NA NA (0.240,0.301) (4.4,5.5) (66.79,74.64) (0.05,0.29) (1.02,1.34)
SNe+CMB NA NA (0.233,0.296) (4.3,5.4) (67.40,75.62) (0.07,0.33) (1.02,1.34)

SNe+BAO+CMB NA NA (0.242,0.294) (4.4,5.5) (67.14,74.87) (0.07,0.30) (1.02,1.34)

Larger Range z=[0,2000]

Conclusions

• The non-parametric model provides the most flexible fit
for the dark energy equation of state without guessing
at a form of w(z)

• The non-parametric model provides tighter probability
bands and is able to be coherent beyond z = 2 unlike
the favored parametric model

•Adding CMB data provides tighter probability bands
and a better fit even on z=[0,2] range

Future Work

•We would like to explore other priors for H0 and Ωm

•We would like to continue to add more SNe, BAO, and
CMB data as it becomes available to further explore
dark energy equation of state

•We would like to do an experimental design to see where
more data on the z axis is most beneficial to further
constrain the dark energy equation of state
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